International Eastern Europe Conference:
European Fisheries Fund and Opportunities for fishery and aquaculture product processing
Riga, Latvia, 1-2 October 2009

Upcoming scenario for the fish canning industry in the Baltic area

Hans Lassen
ICES Secretariat

Available Annually 600 ktons

- Herring
- <300 ktons/year</p>

- Sprat
- <400 ktons/year

Herring and Sprat Landings from Baltic Sea

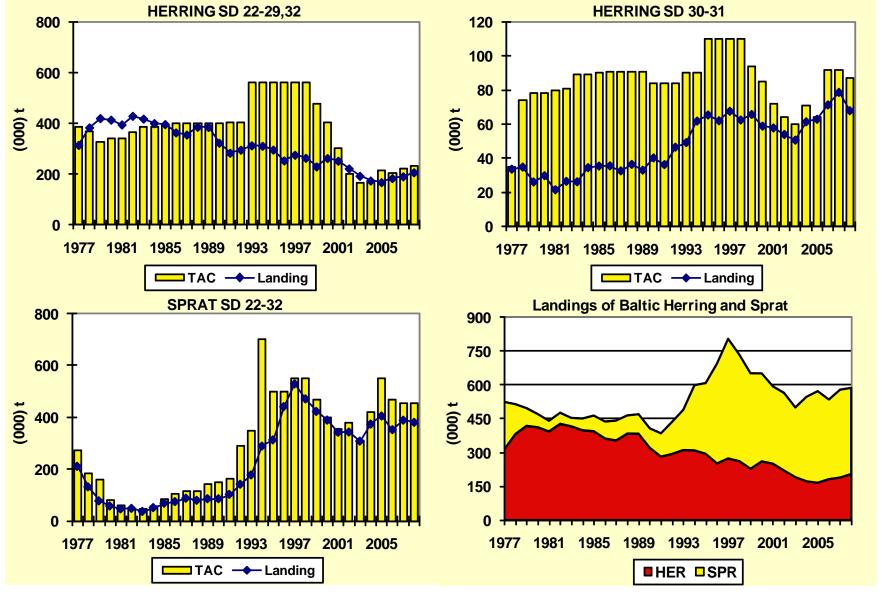
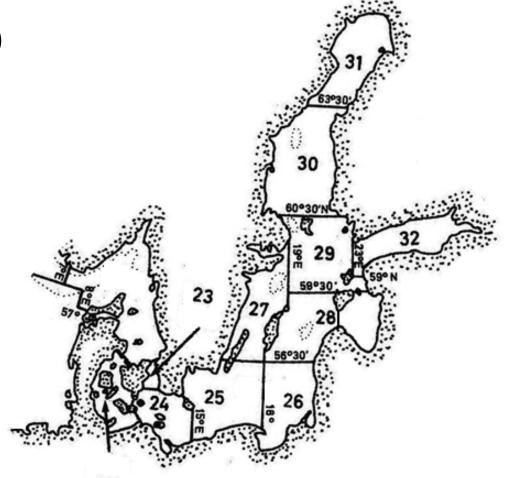


Figure 6.1.1 Reported landings of herring and sprat and agreed TACs in the Baltic Sea.

Baltic Herring differs from Western Baltic to Bothian Bay

Mean Weight in catch for Baltic herring by Subdivision

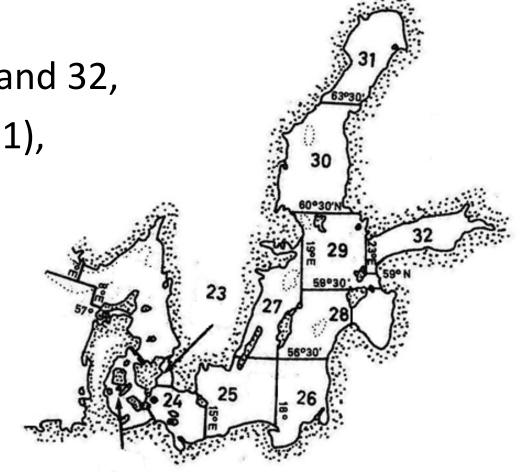

Pelagic Stocks in the Baltic Sea

Herring (Stocks)

- •Western Baltic IIIa + 22-24
- •Central Open Sea (25-29+32)
- •Gulf of Riga (28.1)
- Bothnian Sea (30)
- Bothnian Bay (31)

•Sprat

•Baltic Sea 22-29+32


Management Units for Baltic Pelagics TAC

Herring

- SD 22-24
- SD 25-27, 28.2, 29 and 32,
- Gulf of Riga (SD 28.1),
- -SD 30, 31

Sprat

- SD 22-32

Status of Baltic Pelagic stocks http://www.ices.dk/advice/icesadvice.asp

Stock	Stock status	TAC 2009	ICES Advice 2010
	in relation to F	(t)	(t)
SPRAT			
SD 22-32	Overfished	454 492	306,000
HERRING			
SD 22-24 + IIIa (Skagerrak- Kattegat)	Overfished	37.7 ^(IIIa) /27.2 ⁽²²⁻²⁴⁾	39,800 (incl IIIa)
SD 25-29&32 (excl. GOR)	Harvested sustainably	143 609	103,000
SD 28.1 (G. Riga)	Harvested sustainably	34 892	33,400
SD 30 (Bothnian Sea)	Harvested sustainably	82 669	109,600
SD 31 (Bothnian Bay)	-	02 009	No advice (< 3 kt)

Management Plan Proposal Pelagic Stocks

- Plan includes
 - Target fishing mortality
 - Confinement in change of TAC from one year to the next
 - Low SSB triggering remedy action

ICES evaluated Plan in 2009

Evaluation of EU Management Plan

	Western	Central Baltic	Gulf of Riga herring		Sprat
	Baltic herring (*)	herring			
Fishing mortality [A] (year ⁻¹)	< 0.25	0.22	0.26	0.35	0.40
Annual TAC variation [B] (± percentage)	15	15	15	20	20
Spawning-stock biomass trigger [C] ('000 t)	None	800	60		400
Probability of SSB ₂₀₁₅ <[C]	< 5% (**)	< 5%	< 5%		< 5%
B _{lim} ('000 t)	110 (***)	385	40		200
When SSB <b<sub>lim</b<sub>	$\mathbf{F} = 0$	$\mathbf{F} = 0$	$\mathbf{F} = 0$		$\mathbf{F} = 0$
F when	Not	0.22*[(SSB _y -	0.26*[(SSB _y -	$0.35*[(SSB_y-$	0.40*[(SSB _y -
$B_{lim} < SSB_y < [C]$	Applicable	385)/(800–385)]	40)/(60–40)]	40)/(60–40)]	200)/(400–200)]
Spawning-stock biomass in 2015 SSB ₂₀₁₅ ('000 t)	(*)	1 056	117	101	962
Yield in 2015 Y ₂₀₁₅ ('000 t)	(*)	190	24	29	256

Ecosystem effects of a sprat stock reduction

- Herring: Increased growth and improved condition and subsequently an increase in biomass of herring due to reduced competition with sprat;
- **Cod**: Reduced control of cod recruitment by sprat due to lower predation on eggs and *P. acuspes*;
- Zooplankton and Phytoplankton: Weakening of the trophic cascades leading in spring to increased *P. acuspes* and in summer to increased total zooplankton as well as decreased phytoplankton biomass; Modelling of the lower trophic levels in food-web models needs to be improved. Indirect effects of species interaction for the recovery of the cod stock not included in the models.
- **Sprat**: Increased growth and condition of sprat due to reduced intra-specific competition and hence a higher quality food supply for seabirds.
- Fishing down the sprat stock or improved abiotic conditions will only lead to a cod recovery if the fishing pressure on the cod stock is significantly reduced

Long-term Perspectives

- If cod recruitment continues to fluctuate around the average level observed over the most recent 15 years, the herring and sprat HCR options given above perform reasonably well.
- Regime shift flipping from a Pelagic dominated to a Demersal system
- If cod recruitment is higher than in recent years (by a factor of 2.25, which is still much lower than in the 1980s), the target Fs [A] for herring and sprat are too high to maintain the stock above the trigger SSB levels with confidence.
- However, an increase in the mean weight of herring to the level of the 1980s could compensate for the higher level of cod recruitment.
- Keep HCRs under review to take account of the dynamic nature of marine ecosystems.

Regime Shifts

SYSTEM	PERIOD COVERED	REGIME SHIFT 1	REGIME SHIFT 2	REGIME SHIFT 3	REGIME SHIFT 4
Øresund	1979–2005		1987/88	1995/96	
Central	1974–2006		1987/88	1994/95	
Baltic Sea					
Gulf	1974–2006		1988/89	1997/98	
Riga					
Gulf	1979–2007		1988/89	1995/96	2002/03
Finland					
Bothnian	1979–2006	1982/83	1988/89		
Sea					
Bothnian	1979–2006		1987/88	1993/94	
Bay					
COAST	1971–2006	1976/77	1987/88		2004/05